Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-(4-Methylamino-1,2,5-thiadiazole-3carbonyl)thiosemicarbazide

Marina S. Fonari, ${ }^{\text {a }}{ }^{*}$ Yurii A. Simonov, ${ }^{\text {a }}$ Janusz Lipkowski ${ }^{\text {b }}$ and Arkadii A. Yavolovskiic ${ }^{\text {c }}$

${ }^{\text {a }}$ Institute of Applied Physics, Academy of Sciences of Moldova, Academy str. 5, MD2028 Chisinau, Moldova, ${ }^{\mathbf{b}}$ Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland, and ${ }^{\text {c}}$ A. V. Bogatsky Physicochemical Institute of the NAS of Ukraine, 86 Lustdorfskaya doroga, 270080 Odessa, Ukraine Correspondence e-mail: fonari.xray@phys.asm.md

Received 12 May 2003
Accepted 24 June 2003
Online 9 August 2003

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{OS}_{2}$, the supramolecular architecture is sustained by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and three $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, and by $\mathrm{N} \cdots$. electrostatic interactions. The hydrogen-bond network generates a sheet structure, which extends in the a and b directions and is one c-cell dimension thick. These extended sheets are then linked across inversion centres in the c direction by $\mathrm{N} \cdots \mathrm{S}$ electrostatic interactions, thus forming a three-dimensional network. The principal intermolecular dimensions include $\mathrm{N}(\mathrm{H}) \cdots \mathrm{O}$ distances of 2.8393 (17) and 3.0268 (16) $\AA, \mathrm{N}(\mathrm{H}) \cdots$ S distances in the range $3.2896(14)-3.5924$ (16) \AA and N \cdots S distances of 3.0822 (16) A.

Comment

Thiosemicarbazides and their derivatives are widely used as ligands for the sensing of metal cations (Busev, 1972). In addition, the close intermolecular N...S contacts that have been observed in a variety of compounds containing thiadiazole or thiadiazine rings (Daley et al., 1984; Yamashita et al., 1990; Suzuki et al., 1992, 1997) are an interesting feature of the $=\mathrm{N}-\mathrm{S}-\mathrm{N}=$ linkage. These contacts may be due to an intermolecular electrostatic interaction between $-\mathrm{N}-\mathrm{S}^{+}=\mathrm{N}-$ dipoles and/or weak intermolecular bonding involving a partial rehybridization at the S atom, with d-orbital participation (Gieren et al., 1979).

The title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{OS}_{2}$, (I), crystallizes in space group $P \overline{1}$. Bond lengths and angles in (I) (Table 1) agree with the corresponding values in related compounds (Kivikoski \& Valkonen, 1990; Yamaguchi et al., 1990). In (I) (Fig. 1), the methylated amine group and the neighbouring carbonyl O atom are essentially in the plane of the thiadiazole ring, and the folded conformation of the molecule is sustained by the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{N} 4 \cdots \mathrm{O} 1=$ 2.839 (2) \AA; Table 2] that closes the six-membered ring. The
conjugated thiadiazole and hydrogen-bonded rings afford a practically planar bicyclic system, with a dihedral angle between the two rings of $2.02(5)^{\circ}$.

(I)

The supramolecular architecture is generated by two N $\mathrm{H} \cdots \mathrm{O}$ and three $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, and by $\mathrm{N} \cdots \mathrm{S}$ electrostatic interactions. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are responsible for linking adjacent molecules into a centrosymmetric tetramer. Carbonyl atom O1 acts as an acceptor, via atoms H31 and H32, in a three-centre hydrogen bond with the amine function $[\mathrm{N} 3 \cdots \mathrm{O} 1(-x+1,-y,-z+1)=2.9830(17) \AA$ and $\mathrm{N} 3 \cdots \mathrm{O} 1(x-1, y, z)=3.0268(16) \AA$ A Fig. 2]. The combination of these two three-centre interactions affords a cyclic $R_{2}^{2}(8)$ synthon (Etter, 1990; Bernstein et al., 1995), and the propagation of this motif along the [100] direction generates chains. The robustness of the chains is also sustained by an $\mathrm{N}(\mathrm{H}) \cdots \mathrm{S}$ interaction between the methylated N 4 and thiosemicarbazide S1 atoms. Two such interactions $[\mathrm{N} 4 \cdots \mathrm{~S} 1(-x+2,-y,-z+1)=3.5924(16) \AA$ A $]$, related by the inversion centre, close the 18 -membered $R_{2}^{2}(18)$ ring (Fig. 2).

These chains are then linked into sheets via two $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Fig. 3). The $\mathrm{N} 1-\mathrm{N} 2$ hydrazine bridge atoms act as hydrogen-bond donors, via atoms H 1 and H 2 , to S1 atoms in two different molecules $[\mathrm{N} 1 \cdots \mathrm{~S} 1(-x+1,-y+1$, $-z+1)=3.3446(14) \AA$ and $\mathrm{N} 2 \cdots \mathrm{~S} 1(-x+2,-y+1,-z+1)=$ 3.2896 (14) \AA]. In this manner, a chain of edge-fused (along the $\mathrm{S} 1-\mathrm{C} 8$ covalent bond) $R_{2}^{2}(8)$ and $R_{2}^{2}(10)$ rings running parallel to [100] is generated by translation. The dihedral angle between the planes defined by the eight- and tenmembered rings is $97.5(2)^{\circ}$. A similar closed ten-membered ring based on the thiosemicarbazide branch was found in the demethylated analogue of (I) in its cocrystal with 18-crown-6 (Fonari et al., 2003). Thus, the sheets arranged parallel to the (110) plane are sustained by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Figure 1
A view of the structure of (I), showing displacement ellipsoids at the 50% probability level. The dashed line designates the intramolecular hydrogen bond.

Figure 2
Part of the crystal structure of (I), showing the formation of a hydrogenbonded chain. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $(-x+1,-y,-z+1)$ and $(x-1, y, z)$, respectively.

Neighbouring sheets along the [001] direction, which are a c-cell translation thick, are connected by secondary bonding (Starbuck et al., 1999) $[\mathrm{N} 6 \cdots \mathrm{~S} 2(1-x,-y, 2-z)=$ 3.0822 (16) \AA] into a three-dimensional network (Fig. 4). This contact distance is significantly shorter than the sum of the van der Waals radii for the N and S atoms $(3.35 \AA)$ and leads to a centrosymmetric parallelogram whose sides are the $\mathrm{S} 2-\mathrm{N} 6$ bond $[1.632(2) \AA$] and the $3.0822(16) \AA$ intermolecular contact. A search of the Cambridge Structural Database

Figure 3
Part of the crystal structure of (I), showing the formation of an edge-fused chain of $R_{2}^{2}(8)$ and $R_{2}^{2}(10)$ rings along [100]. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $(-x+1,-y+1$, $-z+1)$ and $(-x+2,-y+1,-z+1)$, respectively.
(Version of November 2002; Allen, 2002) for related molecules resulted in 17 structures that exhibit similar preferentially centrosymmetric interactions between the thiadiazole rings with contact distances in the range 3.022-3.268 \AA. Molecules of (I) in neighbouring sheets are uniformly stacked along the a axis, with centroid-centroid separations of

Figure 4
The three-dimensional network in (I), sustained by hydrogen bonds and secondary $\mathrm{N} \cdots$. S interactions.
4.660 (1) \AA (the a-axis cell length). A similar stacking arrangement of the thiadiazole rings has been found in 4,7-dimethyl-4,7-dihydro-1,2,5-thiadiazolo[3,4-b]pyrazine (planeplane distance $=3.35 \AA$; Yamashita et al., 1990), in the thiadiazole derivative of tetracyanoquinodimethane ($3.48 \AA$; Suzuki et al., 1992) and in the naphtho derivative of bis-1,2,6-thiadiazine ($3.794 \AA$, which is equal in length to the c axis; Gieren et al., 1979).

Experimental

The hydrazide of 4-methylamino-1,2,5-thiadiazole-3-carbonic acid was obtained from the ethyl ester of 4-methylamino-1,2,5-thiadiaz-ole-3-carbonic acid as described by Ivanov et al. (1992). To a mixture of the hydrazide ($3.18 \mathrm{~g}, 0.02 \mathrm{~mol}$) and ammonium isothiocyanate $(1.52 \mathrm{~g}, 0.02 \mathrm{~mol})$ in water $(70 \mathrm{ml})$ was added concentrated hydrochloric acid $(2.0 \mathrm{ml})$. The reaction mixture was boiled for 3 h in a water bath. The precipitate that formed after the hot solution was cooled to room temperature was then recrystallized from methanol/ ethyl acetate (1:1) via solvent evaporation to give colourless crystals of (I) after 2-3 d (m.p. 519-520 K). Analysis found: S 31.95, N $13.75 \% ; \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{OS}_{2}$ requires: $\mathrm{S} 32.07, \mathrm{~N} 14.01 \%$.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{OS}_{2}$
$M_{r}=232.29$
$M_{r}=232.29$
Triclinic, $P \overline{1}$
$a=4.660$ (1) \AA
$b=7.288$ (2) \AA
$c=14.868$ (4) \AA
$\alpha=95.28(1)^{\circ}$
$\beta=91.97$ (1) ${ }^{\circ}$
$\gamma=97.21(1)^{\circ}$
$V=498.3(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.548 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=5.6-16.2^{\circ} \\
& \mu=0.51 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, pale yellow } \\
& 0.35 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM-4 diffractometer
$\omega-2 \theta$ scans
4300 measured reflections
4300 independent reflections
3297 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=34.9^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0463 P)^{2}\right. \\
& \quad+0.1303 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.109$
$S=1.02$
4300 reflections
148 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C8	$1.6996(12)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.3181(16)$
S2-N5	$1.6251(12)$	$\mathrm{N} 4-\mathrm{C} 2$	$1.340(2)$
S2-N6	$1.6320(15)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.445(2)$
O1-C7	$1.2268(15)$	$\mathrm{N} 5-\mathrm{C} 1$	$1.3231(18)$
N1-C7	$1.3532(16)$	$\mathrm{N} 6-\mathrm{C} 2$	$1.3356(17)$
N1-N2	$1.3830(14)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.4427(18)$
N2-C8	$1.3472(16)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.4687(16)$
N5-S2-N6	$99.22(6)$	$\mathrm{N} 6-\mathrm{C} 2-\mathrm{N} 4$	$122.61(12)$
C7-N1-N2	$118.46(11)$	$\mathrm{N} 6-\mathrm{C} 2-\mathrm{C} 1$	$112.04(13)$
C8-N2-N1	$121.17(10)$	$\mathrm{N} 4-\mathrm{C} 2-\mathrm{C} 1$	$125.35(11)$
C2-N4-C9	$121.90(13)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$122.81(11)$
C1-N5-S2	$107.22(9)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$121.71(11)$
C2-N6-S2	$107.59(10)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$115.46(11)$
N5-C1-C2	$113.94(11)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 2$	$118.16(10)$
N5-C1-C7	$121.91(11)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{S} 1$	$122.96(9)$
C2-C1-C7	$124.15(12)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$118.88(9)$

Methyl H atoms were included in calculated positions and refined as riding, with isotropic displacement parameters, while H atoms bound to N atoms were found from Fourier maps and were treated isotropically, subject to a DFIX restraint (SHELXL97; Sheldrick, 1997).

Data collection: KM-4 Software (Galdecki et al., 1996); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\text {i }}$	0.854 (15)	2.723 (18)	3.3446 (14)	130.9 (16)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\text {ii }}$	0.853 (14)	2.478 (14)	3.2896 (14)	159.1 (16)
N3-H31 \cdots O1 $1^{\text {iii }}$	0.864 (14)	2.203 (15)	2.9830 (17)	150.0 (17)
N3-H32 . OO1 $1^{\text {iv }}$	0.856 (14)	2.218 (15)	3.0268 (16)	157.3 (17)
N4-H4...O1	0.844 (15)	2.264 (19)	2.8393 (16)	125.5 (18)
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{~S}^{\text {v }}$	0.844 (15)	2.864 (17)	3.5924 (16)	145.5 (18)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x, 1-y, 1-z$; (iii) $1-x,-y, 1-z$; (iv) $x-1, y, z ;$ (v) $2-x,-y, 1-z$.
molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1695). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Busev, A. I. (1972). Synthesis of Novel Organic Reagents for Inorganic Analysis, pp. 134-138. University of Moscow, Russia.
Daley, S. T. A. K., Rees, C. W. \& Williams, D. J. (1984). Chem. Commun. pp. 57-59.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fonari, M. S., Simonov, Yu. A., Kravtsov, V. Ch., Lipkowski, J., Ganin, E. V. \& Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129-140.
Galdecki, Z., Kowalski, A. \& Uszynski, I. (1996). KM-4 Software. Kuma Diffraction, Wrocław, Poland.
Gieren, A., Lamm, V., Haddon, R. C. \& Kaplan, M. L. (1979). J. Am. Chem. Soc. 101, 7277-7281.
Ivanov, E. I., Yavolovskii, A. A. \& Kuklenko, E. N. (1992). Zh. Org. Khim. 28, 422-426.
Kivikoski, J. \& Valkonen, J. (1990). Acta Cryst. C46, 2431-2435.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Starbuck, J., Norman, N. C. \& Orpen, A. G. (1999). New J. Chem. 23, 969-972.
Suzuki, T., Fujii, H., Yamashita, Y., Kabuto, C., Tanaka, S., Harasawa, M., Mukai, T. \& Miyashi, T. (1992). J. Chem. Soc. pp. 3034-3043.
Suzuki, T., Fukushima, T., Miyashi, T. \& Tsuji, T. (1997). Angew. Chem. Int. Ed. Engl. 36, 2495-2497.
Yamaguchi, K., Ohsawa, A. \& Kawabata, C. (1990). Acta Cryst. C46, 17491751.

Yamashita, Y., Eguchi, J., Suzuki, T., Kabuto, C., Miyashi, T. \& Tanaka, S. (1990). Angew. Chem. pp. 643-645.

